Search Performance Improvement for PSO in High Dimensional Space
نویسندگان
چکیده
Particle swarm optimisation (PSO) was developed by Kennedy and Eberhart in 1995 (Kennedy & Eberhart, 1995) inspired by the collective behaviour of natural birds or fish. PSO is a stochastic optimisation technique that uses a behaviour of population composed by many search points called particle. In spite of easy implementation in computer algorithms, it is well known as a powerful numerical optimizer. In the typical PSO algorithms, a set of particles searches the optimal solution in the problem space efficiently, by sharing the common attractor called global best. There are many modified versions of PSO by improving convergence property to a certain problem. While, a standard PSO is defined by Bratton and Kennedy (Bratton & Kennedy, 2007) to give a real standard for PSO studies. PSO seems as one of the evolutionary computations (ECs), and it has been shown that PSO is comparable to a genetic algorithm (Angeline, 1998). Thus, a lot of studies have demonstrated the effectiveness of PSO family in optimizing various continuous and discrete optimization problems. And a plenty of applications of PSO, such as the neural network training, PID controller tuning, electric system optimisation have been studied and achieved well results (Kennedy, 1997). However, PSO is often failed in searching the global optimal solution in the case of the objective function has a large number of dimensions. The reason of this phenomenon is not only existence of the local optimal solutions, the velocities of the particles sometimes lapsed into the degeneracy, so that the successive range is restricted in the sub-plain of the whole search hyper-plain. The sub-plane that is defined by finite number of particle velocities is a partial space in the whole search space. The issue of local optima in PSO has been studied and proposed several modifications on the basic particle driven equation (Parsopoulos et al., 2001; Hendtlass, 2005; Liang et al., 2006). There used a kind of adaptation technique or randomized method (e.g. mutation in evolutionary computations) to keep particles velocities or to accelerate them. Although such improvements work well and have ability to avoid fall in the local optima, the problem of early convergence by the degeneracy of some dimensions is still remaining, even if there are no local optima. Hence the PSO algorithm does not always work well for the high-dimensional function.
منابع مشابه
Enhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)
So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...
متن کاملتعیین ماشینهای بردار پشتیبان بهینه در طبقهبندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک
Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...
متن کاملیک روش مبتنی بر خوشهبندی سلسلهمراتبی تقسیمکننده جهت شاخصگذاری اطلاعات تصویری
It is conventional to use multi-dimensional indexing structures to accelerate search operations in content-based image retrieval systems. Many efforts have been done in order to develop multi-dimensional indexing structures so far. In most practical applications of image retrieval, high-dimensional feature vectors are required, but current multi-dimensional indexing structures lose their effici...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملAN EFFICIENT HYBRID ALGORITHM BASED ON PARTICLE SWARM AND SIMULATED ANNEALING FOR OPTIMAL DESIGN OF SPACE TRUSSES
In this paper, an efficient optimization algorithm is proposed based on Particle Swarm Optimization (PSO) and Simulated Annealing (SA) to optimize truss structures. The proposed algorithm utilizes the PSO for finding high fitness regions in the search space and the SA is used to perform further investigation in these regions. This strategy helps to use of information obtained by swarm in an opt...
متن کاملImproving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA
With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...
متن کامل